Package 'mirtsvd'

Title: SVD-based Estimation for Exploratory Item Factor Analysis
Description: Provides singular value decomposition based estimation algorithms for exploratory item factor analysis (IFA) based on multidimensional item response theory models. For more information, please refer to: Zhang, H., Chen, Y., & Li, X. (2020). A note on exploratory item factor analysis by singular value decomposition. Psychometrika, 1-15.
Authors: Haoran Zhang [aut, cre], Yunxiao Chen [aut], Xiaoou Li [aut]
Maintainer: Haoran Zhang <[email protected]>
License: GPL-3
Version: 1.0
Built: 2024-11-01 03:37:50 UTC
Source: https://github.com/hrzhang16/mirtsvd

Help Index


Item Factor Analysis by Singular Value Decomposition

Description

Item Factor Analysis by Singular Value Decomposition

Usage

mirtsvd(data, K, link = "logit", epsilon = 1e-04, rotation_fn = NULL, ...)

Arguments

data

the data matrix. Entries are either binary or categorical. Missing entries should be NA.

K

the number of factors.

link

the link fucntion. Possible choices are "logit" and "probit".

epsilon

the truncation parameter. Default value is 1e-4.

rotation_fn

rotation applied to the estimated loading matrix. See rotations. If NULL, no rotation would be applied.

...

optional arguments passed to rotation_fn.

Value

The function returns a list with the following components:

loadings

The estimated loading matrix.

rotation

The rotation method.

type

The data type.

number

The number of categories in data.

References

Zhang, H., Chen, Y., & Li, X. (2020). A note on exploratory item factor analysis by singular value decomposition. Psychometrika, 1-15.

Examples

require(mirtjml)
require(GPArotation)

# load a simulated dataset
attach(data_sim)

data <- data_sim$response
K <- data_sim$K
res <- mirtsvd(data, K, rotation_fn = Varimax)

Scree plot for singular values.

Description

Scree plot for singular values.

Usage

screeplot_svd(data, link = "logit", epsilon = 1e-04, K_max = 10)

Arguments

data

the data matrix. Entries are either binary or categorical. Missing entries should be NA.

link

the link fucntion. Possible choices are "logit" and "probit".

epsilon

the truncation parameter. Default value is 1e-4.

K_max

The maximum number of factors contained in data. Default value is 10.

References

Zhang, H., Chen, Y., & Li, X. (2020). A note on exploratory item factor analysis by singular value decomposition. Psychometrika, 1-15.

Examples

require(mirtjml)

# load a simulated dataset
attach(data_sim)

data <- data_sim$response
screeplot_svd(data, K_max = 10)